\qquad

Purpose: In this problem set, we will define limits of functions (one-sided and two-sided) and compute limits of functions graphically and numerically.

Intuition: The limit of a function asks "what value is this function getting near to?" This is not always the same as the value of the function.

Graphically:

$\lim _{x \rightarrow 2} f(x)$
$f(2)$

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{+}} g(x) \\
& \lim _{x \rightarrow 1^{-}} g(x) \\
& \lim _{x \rightarrow 1} g(x) \\
& g(1)
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{-}} h(x) \\
& \lim _{x \rightarrow 3^{+}} h(x) \\
& \lim _{x \rightarrow 3} h(x) \\
& h(3)
\end{aligned}
$$

$$
\lim _{x \rightarrow \infty} h(x)
$$

Numerically:

x	$\frac{e^{x}-1}{x}$
0	
0.01	
-0.01	
0.001	

Guess $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}$:

Some Definitions:

- LIMIT If we can make the values of $f(x)$ arbitrarily close to L by taking x to be sufficiently close to a (on either side of a) but not equal to a, we say "the limit of $f(x)$, as x approaches a, equals $L^{\prime \prime}$ and we write,
- RIGHT-HAND LIMIT We say "the right-hand limit of $f(x)$, as x approaches a [or the limit of $f(x)$ as x approaches a from the right], equals $L^{\prime \prime}$ and we write,
if we can make the values of $f(x)$ arbitrarily close to L by taking x to be sufficiently close but not equal to a AND \qquad
- LEFT-HAND LIMIT We say "the left-hand limit of $f(x)$, as x approaches a [or the limit of $f(x)$ as x approaches a from the left], equals $L^{\prime \prime}$ and we write,
if we can make the values of $f(x)$ arbitrarily close to L by taking x to be sufficiently close but not equal to a AND \qquad

FACT: For a function $f(x)$,
$\lim _{x \rightarrow a} f(x)=L$ if and only if \qquad and \qquad .

Consider the function

$$
f(x)=\frac{x+2}{x^{2}-5 x-14}
$$

Use at least five values of x to approximate $\lim _{x \rightarrow-2} f(x)$ and sketch the graph (including the scale).

x	$\frac{x+2}{x^{2}-5 x-14}$

Sketch a function $f(x)$ satisfying the following:

- $\lim _{x \rightarrow-\infty} f(x)=0$
- $\lim _{x \rightarrow \infty} f(x)=\infty$
- $\lim _{x \rightarrow-1^{-}} f(x)=-2$
- $\lim _{x \rightarrow-1^{+}} f(x)=2$
- $f(-1)=0$
- $\lim _{x \rightarrow 1^{+}} f(x)=2$
- $\lim _{x \rightarrow 1^{-}} f(x)=-1$

